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Abstract We consider wetting of a one-dimensional random walk on a half-line x ≥ 0 in a
short-ranged potential located at the origin x = 0. We demonstrate explicitly how the pres-
ence of a quenched chemical disorder affects the pinning-depinning transition point. For
small disorders we develop a perturbative technique which enables us to compute explicitly
the averaged temperature (energy) of the pinning transition. For strong disorder we compute
the transition point both numerically and using the renormalization group approach. Our
consideration is based on the following idea: the random potential can be viewed as a peri-
odic potential with the period n in the limit n → ∞. The advantage of our approach stems
from the ability to integrate exactly over all spatial degrees of freedoms in the model and to
reduce the initial problem to the analysis of eigenvalues and eigenfunctions of some special
non-Hermitian random matrix with disorder-dependent diagonal and constant off-diagonal
coefficients. We show that even for strong disorder the shift of the averaged pinning point
of the random walk in the ensemble of random realizations of substrate disorder is indistin-
guishable from the pinning point of the system with preaveraged (i.e. annealed) Boltzmann
weight.

Keywords Localization · Pinning · Quenched disorder · Transition point · Circulant
matrix · Renormalization group

1 Introduction

Wetting is one of the most intensively studied phenomena of statistical physics of inter-
faces. In a very general setting wetting implies the interface pinning by a solid impenetrable
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substrate. Problems of interface statistics in the presence of a hard wall were addressed in
many publications (see, for example, [1, 2] and references therein). The most interesting
question concerns the nature of the wetting or pinning-depinning transition of the interface
controlled by parameters of its interactions with the substrate. Here we study the case when
the substrate is inhomogeneous, so the wetting transition occurs in the presence of disorder.

The pinning-depinning transition in models of wetting in presence of quenched disorder
was studied by many research groups since the middle of 80th. In 1986 Forgacs et al. [3–5]
developed a perturbative renormalization group approach to the (1 + 1)-dimensional wet-
ting subject to a disordered potential along the substrate. Around the same time Grosberg
and Schakhnovich [6, 7] applied the RG technique for studying an equivalent problem of the
localization transition in ideal heteropolymer chains with quenched random chemical (pri-
mary) structure at a point-like potential well in a D-dimensional space. Many conclusions
of [6, 7] for D = 3 agree with those of [3–5]. Both approaches provide important informa-
tion about the thermodynamics near the point of transition from delocalized (depinned) to
localized (pinned) regimes in the presence of quenched chemical disorder.

However some crucial questions of pinning-depinning transition in a quenched random
potential still remain open. One of the most intriguing problems is the determination of the
averaged transition temperature, Tq, for quenched chemical disorder. Since the temperature
enters into problem through the Boltzmann weight β = eum/T , where um is the energy of
m-th interface segment, one may attempt to relate the transition point to the temperature
Ta for annealed chemical disorder with preaveraged Boltzmann weight, 〈β〉 = 〈eum/T 〉. The
RG approaches [3–7] claim Tq = Ta in the thermodynamic limit. In 1992 Derrida, Hakim
and Vannimenus [8] have reconsidered the (1 + 1)-dimensional model of wetting and have
shown by a different RG technique that the disorder is marginally relevant, i.e. any infinitely
small disorder displaces the averaged transition point Tq in the ensemble of quenched se-
quences from the transition point Ta in ensemble of sequences with initially preaveraged
(annealed) Boltzmann weight. Subsequently other works [9, 10] arrived at the same con-
clusion. The equivalent problem of localization transition of a random walk has been also
deeply studied in mathematical literature. In [11] it was rigorously proven that in systems
with return probability which scales as ∼N−α , where N is the number of steps, the phase
transition curves for quenched and annealed systems coincide for 1 < α < 3/2 for small
disorder and are different for 3/2 < α < 2 though they are very close numerically (again for
small disorder). The similar conclusion has been drawn in the work [12] by an alternative
method. In the papers [13, 14] it has been shown rigorously that the disorder is relevant
for α > 3/2. As for the case α = 3/2 there is no definite answer (even for small disorder)
whether the results for quenched and annealed disorder coincide. The value α = 3/2 of the
critical exponent considered here is, therefore, of particular interest.

In our paper we demonstrate explicitly how the presence of quenched chemical disorder
affects the pinning-depinning transition point. For small disorder we develop a perturbation
theory which enables us to compute explicitly the transition temperature of the system. The
advantage of our approach, which borrows the basic idea from [15], stems from the ability to
integrate exactly over all N spatial degrees of freedom of the model and to reduce the initial
problem to the analysis of eigenvalues and eigenfunctions of some special non-Hermitian
N ×N random matrix with disorder-dependent diagonal and constant off-diagonal elements.
Our approach is based on the following general idea: the random potential can be viewed as
a periodic potential with the period N in the limit N → ∞.

The paper is organized as follows. In Sect. 2 we describe the model and derive basic equa-
tions. In Sect. 3 we develop the perturbation theory for eigenvalues of our random matrix
and derive the corresponding expressions for the averaged temperature of pinning-depinning
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Fig. 1 Typical configuration of a random walk representing a wetting in the presence of disordered surface.
The disorder potential randomly takes values u0 and u1

transition for any type of disorder (not necessary Gaussian). The simple renormalization
group approach is developed in Sect. 4, while the numerical analysis of general analytic
equations is performed in Sect. 5. In Conclusion we summarize our results and pose some
new questions.

2 Random Matrix Formulation of Wetting Problem

The problem of fluctuating interface in thermodynamic equilibrium maps into an equivalent
problem one-dimensional random walk on a half-line xm ≥ 0, where m is the discrete time.
On the line x = 0 additional Boltzmann weights βm = eum/T account for the potential in-
teraction of the fluctuating interface (the random walk) and the impenetrable substrate. As
soon as the running time t = m can be associated with the current coordinate along the wall,
one can say that um is the interaction energy of an interface with a substrate at a position m.
If the interaction energies um are arbitrary, then the set {um} = {u1, u2, . . . , uN } represents
the quenched random interaction of the interface with the substrate.

Consider a random walk on a semi-axis x > 0 which represents the height of the fluctu-
ating interface interacting randomly with a surface situated at x = 1. The probability of the
random walk interacting with random surface potential {um} to be found at the position x

after N steps is denoted by GN(x). This function satisfies the following recursion relation
⎧
⎪⎨

⎪⎩

GN+1(x) = 1
2GN(x − 1) + 1

2GN(x + 1) + 1
2 (βN − 1)δx,1GN(x + 1), x ≥ 1,

GN(x) = 0, x = 0,

GN=0(x) = δx,1.

(1)

In the presence of the disordered potential um �= 0 (1) does not conserve normalization of
the propagator GN(x) so it has to be explicitly normalized after N steps. The typical config-
uration of the random walk near random surface is depicted in Fig. 1 for disorder potential
taking only two values {um} = u0 or u1. Let us stress however that our consideration is
quite general and is not restricted to any specific type of a substrate disorder. To answer the
question about the location of the pinning transition find it is more convenient to change dis-
tribution of βm by changing parameters of um at fixed temperature T which is conventionally
set equal to unity for the rest of the article.

Now we define explicitly what is the pinning (or localization) of the random interface in
(1 + 1)-dimensional wetting problem. For a given fixed realization, {um} = {u1, u2, . . . , uN }
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of the random interface of length N , the mean-square end-to-end distance, 〈x2(N, {um})〉 is

〈x2(N, {um})〉 =
∑∞

x=0 x2GN(x, {um})
∑∞

x=0 GN(x, {um}) . (2)

Here the averaging 〈. . .〉 is performed over different configurations of the random walk for
fixed disorder.

Two different types of behavior of the mean-square end-to-end distance, 〈x2(N, {um})〉
are expected in the thermodynamic limit:

〈x2(N, {um})〉|N	1 =
{

�1({um}), localized (or pinned),

�2({um}) × N, delocalized (or depinned),
(3)

where �1,2({um}) are some positive constants independent of N . The basic thermodynamic
characteristics, such as the mean-square end-to-end distance and the free energy are self–
averaged quantities as was shown in [16] by the martingale technique, i.e in the thermody-
namic limit they do not depend on a given realization {um} but only on the details of the
disorder distribution, such as the mean value and fluctuations. We expect therefore that

〈x2(N, {um})〉|N	1 = 〈x2(N)〉|N	1 =
{

�1 for ū > utr,

�2 × N for ū < utr,
(4)

where bars denote averaging over realization of disorder and utr depends on the details of the
disorder distribution. The quantity utr is called the energy of the pinning transition. Slightly
above the transition point the following critical behavior of the free energy FN = lnGN of
an N -step random walk in a half-space x ≥ 0 is expected:

lim
N→∞

1

N
FN ≡ lim

N→∞
1

N
lnGN

∣
∣
∣
∣
ū→u+

tr

= const(ū − utr)
α (5)

where α is the critical exponent defining the order of the phase transition. In the absence of
disorder it was shown [17–20] that α = 2 which corresponds to an ordinary 2nd order phase
transition. In the next subsection we consider the situation without disorder and reproduce
these calculations. The reason for doing this is to define the notation and introduce important
concepts which we shall use in the more complex disordered case.

2.1 Wetting in Absence of Substrate Disorder

We review briefly the situation with no chemical disorder, i.e. when all interaction energies
take the same value, {um} = {u,u, . . . , u}. Hence, all the Boltzmann weights in (1) are equal,
i.e. βm = β for m = 1, . . . ,N .

Using the discrete sin-Fourier transform and introducing the generating function, we
define the function G(q, s) as follows

G(q, s) =
∞∑

x=0

sinqx

∞∑

N=0

sNGN(x). (6)

This function satisfies the integral equation which can be easily derived from (1)

1

s
G(q, s) − sinq

s
= cosq G(q, s) + 1

π
(β − 1) sinq

∫ π

0
G(q ′, s) sin 2q ′dq ′. (7)
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Introducing

A(s) =
∫ π

0
G(q, s) sin 2q dq (8)

we can rewrite (7) as an algebraic equation for A(s):

A(s) =
∫ π

0

sinq sin 2q

1 − s cosq
dq + s

π
(β − 1)A(s)

∫ π

0

sinq sin 2q

1 − s cosq
dq. (9)

Solving it we get

A(s) = 1

[∫ π

0
sinq sin 2q

1−s cosq
dq]−1 − s

π
(β − 1)

= π

s

(1 − √
1 − s2)2

s2 − (β − 1)(1 − √
1 − s2)2

(10)

which allows us to write the complete expression for the function G(q, s):

G(q, s) = sinq

1 − s cosq

(

1 + s(β − 1)

π
A(s)

)

. (11)

The inverse Fourier transform applied to (11) gives us

G(x, s) = 2

π

∫ π

0
G(q, s) sinqx dq = 2

(
1

s
+ β − 1

π
A(s)

)(
1 − √

1 − s2

s

)x

. (12)

Performing the summation over all x ≥ 0 we arrive at the following expressions for the
functions G(s) =∑∞

x=0 G(x, s) and
∑∞

x=0 x2G(x, s):

G(s) =
∞∑

x=0

G(x, s) = 2

(

1 + s(β − 1)

π
A(s)

)
1

s − 1 + √
1 − s2

,

∞∑

x=0

x2G(x, s) = 2

(

1 + s(β − 1)

π
A(s)

)
(s2 + (2 + s)(−1 + √

1 − s2))

(s − 1 + √
1 − s2)3

.

(13)

The first equation in (13) is the basis for the derivation of the free energy f = limN→∞ lnGN

and we have

GN = 1

2πi

∮

G(s)s−N−1 ds, (14)

while the second equation in (13) provides the mean-square end-to-end distance

〈x2(N)〉 = G−1
N

1

2πi

∮

s−N−1 ds

∞∑

x=0

x2G(x, s). (15)

The integrals in (14, 15) are performed along a contour in the complex plane of s which lies
inside the unit circle. The function G(s) is analytic in the whole complex plane except for
the branch cuts on the real axis for |Re s| > 1. In the localized phase the function G(s) has
poles for |s| < 1 on the real axis. In the thermodynamic limit N → ∞ the pinning transition
is indicated by appearance of the pole at s → str = 1, i.e. is determined by the point of
divergence of the function G(s) for s = 1, which, in turn, diverges when the denominator
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of A(1) tends to zero as β approaches the transition point βtr = eutr . Thus, we have the
following equation for βtr (see (10))

str −√βtr − 1
(

1 −
√

1 − s2
tr

) ∣
∣
∣
str=1

= 0, βtr ≡ eutr = 2, utr = ln 2. (16)

In the localized phase the free energy f in the thermodynamic limit N → ∞ is dom-
inated by the closest to zero pole s0(β) of the function G(s) in (13) for some fixed value
of β:

s0 −√β − 1
(

1 −
√

1 − s2
0

)
= 0, s0 = 2

√
β − 1

β
. (17)

Calculating the contribution of this pole to the integral in (14), so that:

GN = lim
N→∞

1

2πi

∮

G(s)s−N−1ds = s−N
0 =

(
2
√

β − 1

β

)−N

(18)

we arrive at desired expression of the free energy f = limN→∞ 1
N

lnGN in the thermody-
namic limit

f = − ln s0 = ln
2
√

β − 1

β
. (19)

In the vicinity of the transition point we write β = βtr + δ, where δ  βtr. Expanding (19)
near βtr = 2, we get

f (β → βtr) = δ2

8
= (β − βtr)

2

8
= (u − utr)

2

2
. (20)

Comparing (20) to (5) we conclude that α = 2 and hence the pinning transition on a homo-
geneous substrate is the standard 2nd order phase transition in accordance with the results
[17–20].

2.2 Wetting in a Periodic Bimodal Potential

Consider now the wetting in a substrate potential with a bimodal periodic distribution of
energies {u} = {u0, u1, u0, u1, . . . , u0, u1}. We denote by u0 and u1 the energies belonging
to the even/odd time slices correspondingly. This problem has been addressed for the first
time in [21] and then considered in much more general setting in subsequent publications
[22–25]. The reason to reconsider this problem is basically methodological: we solve this
problem in a matrix form and then in Sect. 2.3 generalize this matrix approach to a substrate
with arbitrary period of disorder.

The master equation for the function GN(x) which generalizes (1) is as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G2N+1(x) = 1
2 G2N(x − 1) + 1

2 G2N(x + 1) + 1
2 (β0 − 1)δx,1G2N(x + 1),

G2N+2(x) = 1
2 G2N+1(x − 1) + 1

2G2N+1(x + 1) + 1
2 (β1 − 1)δx,1G2N+1(x + 1),

GN(x = 0) = 0,

GN=0(x) = δx,1,

(21)

where β0,1 = eu0,1 are the corresponding Boltzmann weights.
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Define odd and even functions GN :

{
G2N(x) = WN(x),

G2N+1(x) = VN(x).
(22)

Rewrite (21) in Fourier space using functions WN(x) and VN(x):

⎧
⎪⎪⎨

⎪⎪⎩

VN(q) = cosq WN(q) + sinq

π
(β0 − 1)

∫ π

0 WN(q ′) sin 2q ′ dq ′,

WN+1(q) = cosq VN(q) + sinq

π
(β1 − 1) 2

π

∫ π

0 VN(q ′) sin 2q ′ dq ′,

WN=0(q) = sinq.

(23)

Introducing the generating functions W(q, s) and V (q, s)

W(q, s) =
∞∑

N=0

W(q)sN, V (q, s) =
∞∑

N=0

V (q)sN (24)

we can write a closed system of integral equations

{
V (q, s) = cosq W(q, s) + β0−1

π
sinq

∫ π

0 W(q ′, s) sin 2q ′dq ′,

W(q, s) = sinq + s cosq V (q, s) + s
β1−1

π
sinq

∫ π

0 V (q ′, s) sin 2q ′dq ′.
(25)

It is worth noting that the variable s plays the role of the fugacity of the two-step block and
is no longer associated with a single step as, for example, in (1).

Equations (25) allow for a very convenient matrix formulation which could be later easily
generalized to longer periods. Introduce the matrices

Â =
(

0 1
1 0

)

, B̂ =
(

β0 − 1 0
0 β1 − 1

)

, M̂s =
(

0 1
s 0

)

, Î =
(

1 0
0 1

)

(26)
and vectors

G(q, s) =
(

V (q, s)

W(q, s)

)

, F(q) =
(

0
sinq

)

. (27)

Rewriting (25) using (26–28), we obtain equation for the vector function G(q, s)

G(q, s) = F(q) + cosq M̂s G(q, s) + sinq

π
B̂M̂s

∫ π

0
G(q ′, s) sin 2q ′ dq ′. (28)

For further analysis it is convenient to rewrite (28) in the following form

G(q, s) = (Î − cosq M̂s)
−1F(q) + sinq

π
(Î − cosq M̂s)

−1B̂M̂s

∫ π

0
G(q ′, s) sin 2q ′ dq ′.

(29)
Define now

Q(s) =
∫ π

0
G(q, s) sin 2q dq (30)
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(compare to (8)). The solution for Q(s) reads

Q(s) =
[

Î − 1

π

∫ π

0
dq sinq sin 2q(Î − cosqM̂s)

−1B̂M̂s

]−1

×
∫ π

0
(Î − cosq M̂s)

−1F(q) sin 2q dq. (31)

This equation extends the solution (10) to the periodic bimodal potential {u} = {u0, u1,

u0, u1, . . . , u0, u1}. Setting parameter s to its critical value s = str = 1 and calculating ex-
plicitly the integrals we arrive at the following result

Q(s) =
( 1

2−β1
0

0 1
2−β0

)(
2π

0

)

(32)

implying the phase transition at β1 = 2. It is clear from the above expression that the value
of β0 is actually irrelevant. This fact reflects the peculiarity of the microscopic model: after
an even number of steps the random walk has exactly zero probability to reach x = 2 from
which transition to x = 1 is controlled by β0. Mathematically it is reflected in the orthogo-
nality of F(q) to the eigenvector belonging to the eigenvalue 1/(2−β0) in (32). We shall see
in the next Subsection that this peculiarity persists for arbitrary even periods of the substrate
potential.

2.3 Wetting in a Potential with Arbitrary Period Length

We can straightforwardly generalize the approach developed in the previous section to the
case of a substrate potential with the period n:

{u} = {. . . ,
period

︷ ︸︸ ︷
u0, u1, . . . , un−1, . . . ,

period
︷ ︸︸ ︷
u0, u1, . . . , un−1, . . .} (33)

i.e. the total substrate consists of � = N/n copies of random subchains of length n each. The
equations (written already in the Fourier space) which extend (23) to the case of repeating
n-periodic potential are as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G
(1)
N (q) = cosq G

(0)
N (q) + sinq

π
(β0 − 1)

∫ π

0 G
(0)
N (q ′) sin 2q ′ dq ′,

G
(2)
N (q) = cosq G

(1)
N (q) + sinq

π
(β1 − 1)

∫ π

0 G
(1)
N (q ′) sin 2q ′ dq ′,

...

G
(n−1)
N (q) = cosq G

(n−2)
N (q) + sinq

π
(βn−2 − 1)

∫ π

0 G
(n−2)
N (q ′) sin 2q ′ dq ′,

G
(0)

N+1(q) = cosq G
(n−1)
N (q) + sinq

π
(βn−1 − 1)

∫ π

0 G
(n−1)
N (q ′) sin 2q ′ dq ′,

G
(1)

N=0(q) = sinq.

(34)
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As in the case of bimodal disorder rewrite (34) in a matrix form

G(q, s) = F(q) + cosq M̂s G(q, s) + sinq

π
B̂M̂s

∫ π

0
G(q ′, s) sin 2q ′ dq ′, (35)

where

B̂ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

β0 − 1 0 0 . . . 0 0
0 β1 − 1 0 0 0
0 0 β2 − 1 0 0
...

. . .
...

0 0 0 βn−2 − 1 0
0 0 0 . . . 0 βn−1 − 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, M̂s =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 . . . 0 0 1
1 0 0 0 0
0 1 0 0 0
...

. . .
...

0 0 1 0 0
0 0 . . . 0 s 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(36)
and

G(q, s) =

⎛

⎜
⎜
⎜
⎜
⎝

G1(q, s)
...

Gn−1(q, s)

Gn(q, s)

⎞

⎟
⎟
⎟
⎟
⎠

, F(q) =

⎛

⎜
⎜
⎜
⎜
⎝

0
...

0

sinq

⎞

⎟
⎟
⎟
⎟
⎠

. (37)

Introducing (as in (30))

Q(s) =
∫ π

0
G(q, s) sin 2q dq (38)

we get for (35)

Q(s) − 1

π

∫ π

0
dq sinq sin 2q [Î − cosq M̂s]−1 B̂M̂sQ(s)

=
∫ π

0
dq sin 2q[Î − cosq M̂s]−1F(q), (39)

where by Î we have denoted the N × N unit matrix.
It can be checked that B̂M̂s = M̂sB̂

′, where

B̂ ′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

β1 − 1 0 0 . . . 0 0

0 β2 − 1 0 0 0

0 0 β3 − 1 0 0
...

. . .
...

0 0 0 βn−1 − 1 0

0 0 0 . . . 0 βn − 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, βn = β0. (40)

Introducing the modified vector R(s) = B̂ ′ Q(s) we rewrite (32) in the following form:

T̂sR(s) =
[

B̂ ′−1 − 1

π

∫ π

0
dq sinq sin 2q [Î − cosq M̂s]−1 M̂s

]

R(s) = C(s) (41)
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Fig. 2 Behavior of the coefficients am for even (a) and odd (b) values of total length n

with the right hand side

C(s) =
∫ π

0
dq sin 2q[Î − cosq M̂s]−1F(q). (42)

The matrix Ts in (41) can be explicitly written as

T̂s ≡

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a0 − 1
β1−1 a1 a2 . . . an−2 an−1

an−1 a0 − 1
β2−1 a1 an−3 an−2

an−2 an−1 a0 − 1
β3−1 an−4 an−3

...
. . .

...

a2 a3 a4 a0 − 1
βn−1−1 a1

a1 a2 a3 . . . an−1 a0 − 1
βn−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(43)

and has disorder on its main diagonal only. The nonrandom elements am are given by the
following integrals

am ≡ am(s) = 1

π

∫ π

0

s sinq sin 2q cosn−m−1 q

1 − s cosn q
dq. (44)

For n even the symmetry of the integrand implies that am are zero for m odd. The structure
of the matrix Ts is therefore similar to that of (32): it does not mix vectors having all but
odd/even zero elements. In the following we call these subspaces odd and even sectors. It is
important to note that C(s) belongs to the odd sector and therefore is affected by βm with m

odd only. For n odd the integrand in (44) has no symmetric properties and all elements am

are nonzero. In this case odd and even sectors are mixed by the matrix Ts and the physical
behavior of the polymer depends on all the values of the disorder potential. The behavior of
the coefficients am is depicted in Fig. 2 separately for even and odd total lengths, n. In what
follows we restrict ourselves to the case of odd values of n. This avoids the discussion of the
somewhat pathological situation where the pinning transition is insensitive to a macroscopic
number of values of the disorder. This situation arises due to the impossibility for our random
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walk to return to the origin after an odd number of steps and can be eliminated by a different
choice of the step probabilities.

The pinning transition point in the periodic potential β(n) = {β1, . . . , βn} with the period
n (n 	 1), where n is assumed to be odd, is determined by the equation

det T̂s{β(n)}|s=str=1 = 0. (45)

Let us stress once again that we are in the situation where the sequence {β} consists of
� = N/n copies of random subsequences {β(n)} of length n (n 	 1) each. In the Appendix 2
we show that the pinning transition point in the chain consisting of � (� → ∞) copies of
subsequences {β(n)} (n → ∞) is the same as in the single subsequence {β(n)} (i.e. for � = 1)
in the limit n → ∞.

3 Perturbative Calculation of the Phase Boundary

In this section we analyze the spectrum of the matrix T̂ ≡ T̂s |s=str=1 given by (43) using
standard second order perturbation theory. The disorder is supposed to be weak, i.e. the
fluctuations of the diagonal elements in (45) are small compared to their mean value.

3.1 Non-Random Substrate

We begin with the non-random situation and show that in this case (43–45) reproduce the
results derived in Sect. 2.1. Thus, we shall consider this non-random case as a reference state
and develop a perturbation expansion with respect to this unperturbed state. In the absence
of any disorder (45) reduces to

det T̂s(β) = det

⎛

⎜
⎜
⎜
⎜
⎝

a0 − (β − 1)−1 a1 . . . an−1

an−1 a0 − (β − 1)−1 . . . an−2

...
...

. . .
...

a1 a2 . . . a0 − (β − 1)−1

⎞

⎟
⎟
⎟
⎟
⎠

= 0,

where the non-random matrix T̂s(β) is a special case of a Toeplitz matrix known as a circu-
lant matrix [26]. We diagonalize it in the standard way:

T̂s = V̂ �̂V̂ †, V̂ = 1√
n

{e−2πimk/n; m,k = 0,1, . . . , n − 1}, (46)

where �̂ is the diagonal matrix of the eigenvalues

λm =
n−1∑

k=0

ake
−2πimk/n − (β − 1)−1, m = 0,1, . . . , n − 1. (47)

Using the definition (44) for the coefficients ak and by virtue of (47) we have

λm(s) =
n−1∑

k=0

[
1

π

∫ π

0

s sinq sin 2q cosn−1−k q

1 − s cosn q
dq

]

e−2πimk/n − (β − 1)−1. (48)
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At the critical value s = str = 1 the last equation becomes

λm = 2e−4πim/n − 1 − 2e−4πim/n
√

1 − e4πim/n − (β − 1)−1. (49)

The transition point βtr is determined by the condition λ0(βtr) = 0, yielding the criterion

1 − (βtr − 1)−1 = 0, βtr = 2 (50)

which reproduces the solution of the non-random problem considered at length in Sect. 2.1.

3.2 Random Substrate

Suppose now that the energies um = lnβm for m = 1, . . . , n are independent random vari-
ables distributed according to the law

um = w + εσm, σm =
{+1 with the probability 1

2 ,

−1 with the probability 1
2

(51)

and find eigenvalues and eigenvectors of the perturbed matrix T in the second order of
series expansion in the strength of the disorder. The diagonal elements of the matrix T̂ (43)
read

Qi = a0 − (eui − 1)−1 = a0 − (ew+σi ε − 1)−1 (i = 1,2, . . . , n). (52)

Expanding (52) for ε  1, we arrive finally at the following expression for the diagonal
elements Qi of the matrix T̂

Qi = a0 − (ew − 1) − p0 + p1σi (53)

where
{

p0 = 1
2

ew(ew+1)

(ew−1)3 ε2,

p1 = ew

(ew−1)2 ε.
(54)

The matrix T̂s{β(n)} up to the second order perturbation in ε reads

T̂s{β(n)} = Â + B̂ = T̂s(e
w) − p0Î +

⎛

⎜
⎜
⎜
⎝

p1σ1 0 . . . 0
0 p1σ2 0
...

. . .
...

0 0 . . . p1σn

⎞

⎟
⎟
⎟
⎠

, (55)

where the matrices Â = T̂s(e
w) − p0Î and B̂ are correspondingly the unperturbed and per-

turbed parts of the matrix T (by Î we have denoted the unit n × n matrix).
Standard 2nd order perturbation theory leads to the following expression for the per-

turbed eigenvalue λ′
m:

λ′
m{β(n)} = λm + vmB̂v�

m +
∑

m′ �=m,ν

|v(ν)
m B̂v�,(ν)

m′ |2
λm − λm′

, (56)
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where ν is the degeneracy of the eigenvalues and the eigenvectors vm are the columns of
the matrix (46). In what follows we are interested in the computation of the largest eigen-
value λ′

0.
For any particular sequence {β(n)} the transition point is determined by the condition

0 = λ′
0{β(n)} = 1 − 1

ew − 1
− p0 + p1

n

(
n−1∑

k=0

σk

)

+ p2
1

n2

(
∑

m′ �=0

1

λ0 − λm′

n−1∑

k=0

n−1∑

k=0

σkσk′e−2πm′(k−k′)/n

)

. (57)

Let us denote
{

S1 =∑n−1
k=0 σk,

S2 =∑m′ �=0
1

λ0−λm′
∑n−1

k=0

∑n−1
k=0 σkσk′e−2πm′(k−k′)/n

(58)

and expand the coefficients p0 and p1 for small w in the vicinity of ln 2 up to the 2nd order
in w and ε:

p0 = 3ε2 + 13ε2(ln 2 − w) + 75

2
ε2(ln 2 − w)2,

p1 = 2ε + 6ε(ln 2 − w) + 13ε(ln 2 − w)2.

(59)

In the 2nd order perturbation series we keep only the terms up to the second order in w̃ =
ln 2 − w and ε:

λ′
0 = −2w̃ − 3w̃2 − 3ε2 + (2ε + 6εw̃)

S1

n
+ 4ε2 S2

n2
= 0. (60)

Solving the quadratic equation w̃(ε) = 0 (we have chosen the branch, on which w → ln 2 as
ε → 0) and re-expanding the final expression in ε up to the 2nd order, we get

w̃ = −ε
S1

n
+ 1

2
ε2

(

3
S2

1

n2
+ 4

S2

n2
− 3

)

. (61)

Let us stress that the expression (61) is valid for any distribution P{σ } of random Ising–type
variable σi . The general form of the transition curve in the 2nd order approximation reads

w̃ = −ε
〈S1〉
n

+ 1

2
ε2

(

3
〈S2

1 〉
n2

+ 4
〈S2〉
n2

− 3

)

. (62)

The terms proportional to 〈S1〉 vanish due to the symmetry σi ↔ −σi . The calculation of the
second order correction is straightforward though rather tedious and is given in Appendix 1.
The final result for the averaged transition point w in the limit of large n reads

w̃ = ε2

2
(63)

so that the phase diagram is determined by the equation

w = ln 2 − ε2

2
. (64)
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Fig. 3 a Phase diagram for quenched disorder in the plane (ε,w). The renormalization group computations
and perturbation theory are depicted by solid and dashed lines correspondingly. The results of numerical
averaging are shown for n = 1001; b Difference �w between numerical data and RG results (solid line in the
left figure)

This result of the perturbation theory for the phase boundary w(ε) is shown in Fig. 3a by
dashed line.

For ε < 0.5 there is a very good agreement of the perturbative approach with the results
of our renormalization group computations outlined in the next section, as well as with the
numerical data of Sect. 5.

4 Simple RG Consideration

The location of the localization (wetting) transition can be found following a simple renor-
malization argument. We start with the master equation (7) in the Fourier space

GN+1(q) = cosq GN(q) + (βN − 1
) sinq

π

∫ π

0
dq ′ sin 2q ′ GN(q ′) (65)

and iterate it twice

GN+2(q) = cos2 q GN(q) (66)

+ (βN − 1)
sinq cosq

π

∫ π

0
dq ′ sin 2q ′ GN(q ′)

+ (βN+1 − 1)
sinq

π

∫ π

0
dq ′ sin 2q ′ cosq ′ GN(q ′) (67)

+ (βN − 1)(βN+1 − 1)
sinq

π2

∫ π

0
dq ′ sin 2q ′ sinq ′

∫ π

0
dq ′′ GN(q ′′). (68)

The last term in the r.h.s. vanishes due to the orthogonality. The second and third term de-
scribe processes of two-step arrival to x = 1. We note that in the long-wavelength limit
q → 0 they are identical as seen by replacing the cosines by unity. This corresponds to ne-
glecting variation in GN(x) on scale of the lattice spacing and will be justified later. Combin-
ing these terms we obtain an expression similar to the small q version of (65) with modified
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random part

GN+2(q) − GN(q) = −q2GN(q) + (βN + βN+1 − 2)
sinq

π

∫ π

0
dq ′ sin 2q ′GN(q ′) (69)

and corresponding to the double time interval. By this procedure the random potential has
been renormalized to the arithmetic mean of two subsequent terms:

β ′
N/2 = βN + βN+1

2
. (70)

The probability distribution of the renormalized disorder β ′ is related to that of β as
follows. Let P (β) be a probability distribution of βj and P ′(β ′) the one of the new variables.
The corresponding Fourier transforms (characteristic functions) ξ(λ) and ξ ′(λ′) are related
as

ξ ′(λ′) = ξ 2(λ′/2). (71)

The fixed point of this transformation is the exponential function

ξ ′(λ) = ξ(λ) = exp(iλ〈β〉) (72)

which is just a consequence of the Central Limit theorem.
Therefore the disorder βj = euj can be just replaced by their mean value 〈βj 〉 = 〈euj 〉 in

the long-wavelength limit. The crucial observation is that 〈euj 〉 �= e−〈u〉, so fluctuations of uj

modify the localization criterion. For disorder discussed in the previous section (see (51)).
The mean value of βj is given by

〈βj 〉 = ew cosh ε (73)

so it depends on both parameters, the mean value, w, and fluctuations, ε. The localization
criterion reads from (18)

β̄ = ew cosh ε = 2 ⇒ w = ln 2 − ln cosh ε. (74)

The lowest order in expansion of this expression in powers of ε yields the result of the
perturbation theory (64). The graphical representation of the RG phase boundary (74) is
shown in Fig. 3a by solid line.

Finally, we observe that from the expressions (10, 11) it follows that the bound state
contribution to the Fourier transform

GN(q) ∼ β − 2

2β

sinq

1 − s0 cosq
s−N

0 , s0 = 2
√

β − 1

β
(75)

is strongly peaked around q = 0 close to the transition point β = 2. This justifies replacing
cosq by unity in the integrals in (66).

5 Numerical Analysis of the Depinning Transition

To visualize the eigenvalues of the matrix T̂ , consider the case of absence of any disorder,
i.e. take in (43) the homogeneous sequence {β(n)} with βj ≡ β for all j = 1, . . . , n. In Fig. 4
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Fig. 4 The eigenvalues λm of the matrix T̂ in the complex plane (Reλ, Imλ) for: a even n (n = 200) and
b odd n (n = 201) for two different values of w: w = ln 2.0 (transition point) and w = ln 2.1

we have plotted the eigenvalues λm (m = 1, . . . , n) of the matrix T̂ in the complex plane for
two values w = ln 2.1 and w = ln 2.0 (transition point) for even (a) and odd (b) values of n.
For even values of n the spectrum of the pure matrix T̂ is doubly degenerate, while for odd
n this degeneracy disappears. In what follows we consider odd n only.

We now consider disorder generated by the distribution (51) and find numerically the
location of the pinning transition. The general procedure is very simple: we fix some value
ε, then generate ensemble of random sequences β(n) from the distribution (51) and find for
each sequence such a w at which the real eigenvalue of the matrix T̂ crosses zero implying
the condition

lim
n→∞ det T̂ {β1, . . . , βn} = 0. (76)

The obtained critical value is then averaged over realizations {β(n)} of quenched disorder.
We take the size of the n × n matrix T̂ equal to n = 1001. In Fig. 3a we show the points
corresponding to the averaged phase boundary for the ensemble of quenched sequences
{β(n)} in the space of the parameters (ε,w). In Fig. 3b we have depicted the difference
�w between the numerical data and RG results for a model with preaveraged Boltzmann
weight. We see that within the error bar the deviation �w varies very insignificantly and it
is impossible to detect any statistically reliable difference between numerical data and RG
curve. In the next section we discuss the numerically obtained phase diagram. As usually,
the error bars show the standard deviation, SD = ( 1

M−1

∑M

i=1(wi − w)2)1/2, where M is

the number of samples and w = 1
M

∑M

i=1 wi is the mean value of the transition point for
given number of samples. In our numerical computations we have used the statistics of
M = 100 samples for each point in Fig. 3. To reduce the error, say, by factor of 2 one
has to increase M at least up to 400 for given value of n. However we stress that due to
the self-averaging property proved for this model in [16], the error of the transition point
determination decreases as the matrix size, n, increases. So, from the numerical point of
view, to speed up the computations one has to find a compromise between the size of a
sample, n, and number of samples, M . Namely, as n is increasing, each sample demands
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more computational time; however reliable results of w are available for smaller number of
samples, M .

6 Conclusions

In this paper we have discussed the problem of wetting of a one-dimensional random walk
on a half-line x ≥ 0 in a short-ranged periodic potential located at the origin x = 0. When
the period of the potential becomes equal to the length of the random walk trajectory, then
one could conjecture that the trajectory under consideration is interacting with the quenched
random potential. In other words, we approach the random potential, increasing more and
more the period of the substrate potential.

The most attention is paid to the question concerning the location of the transition point
averaged over all equally weighted realizations of the disorder. We have shown that for any
specific disorder realization, the transition point can be obtained from the condition that the
determinant of the matrix (43) (with the entries (44)) is equal to zero at s = 1—see (45).
The period of the substrate is given by the size n of the matrix (43) which remains to be very
large but finite in our consideration. The fugacity s is conjugate to the number of copies,
� = N/n, of n-periodic potential (so, N is the total length of the substrate). Setting the
fugacity s in (43, 44) to its limiting value str ≡ 1 amounts to the consideration of � → ∞
copies of the system (i.e. the total length of the substrate, N , is infinite).

One may worry that in the thermodynamic limit the transition point in the periodic se-
quence of � (� → ∞) subchains each of length n (n 	 1) differs from the transition point
in a single (� = 1) subchain (of the same primary structure) of length n (n → ∞). However
this is not true and in Appendix 2 we present the arguments demonstrating that the transition
point is independent on number of copies, �. In other words, the transition point is not sensi-
tive to the sequence of thermodynamic limits: (i) we take the limit N → ∞ for fixed n 	 1
and take the limit n → ∞ afterwards, or (ii) we take the limit N → ∞ simultaneously with
the limit n → ∞ such that � = N/n = const, both in (i) and (ii) we arrive at the same value
of the transition point.

In our work we have also compared the results of our numerical simulations performed
in a wide range of disorder strengths with the results of the perturbation theory for weak
disorder, and with the results of a simple renormalization group consideration. The results
obtained allow us to conclude that for weak disorder ε < εpert ∼ 0.5 all our approaches
(including the perturbation theory) are in a good agreement. For sufficiently high disorder
strengths ε > εpert the second order perturbation theory fails, while the results of the renor-
malization group always agree with the numerical simulations—see the Fig. 3. This point
deserves some special discussion. Namely, recall that results of the RG computations claim
the existence of the averaged Boltzmann weight which governs the behavior of the system
under renormalization. This fact signals the existence of an effective preaveraged (with re-
spect to the disorder) “annealed” system with averaged Boltzmann weight 〈eum〉. This state-
ment is consistent with the conclusion of works [3–7], but contradicts the statement that the
disorder is marginally relevant formulated for the first time in [8]. The results obtained in our
work allow us to state that even for strong disorder the shift of the averaged pinning point
of the random walk in the ensemble of random realizations of substrate disorder is indistin-
guishable from the pinning point of the system with preaveraged (i.e. annealed) Boltzmann
weight. Hence we are supporting early conjecture [3–7] that the disorder is not marginally
relevant, contrary to later works [8].
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Let us note at the very end that the advantage of our matrix approach is its transparency.
We have made no any uncontrolled assumption and have reduced very complicated ini-
tial problem with many degrees of freedom to the well posed problem of finding eigen-
values of some random matrix with a relatively simple structure. The localization criteria
detT {β1, . . . , βN } = 0 for a random sequence {β1, . . . , βN } in the limit N → ∞ is exact for
any strengths and any distributions of βi (i = 1, . . . ,N ).
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Appendix 1: Perturbation Theory for Matrix Ts

The terms in (62) are

⎧
⎪⎪⎨

⎪⎪⎩

1
n
〈S1〉 = 1

n

∑n−1
k=0〈σk〉,

1
n2 〈S2

1 〉 = 1
n2

∑n−1
k=0

∑n−1
k′=0〈σkσk′ 〉,

1
n2 〈S2〉 = 1

n2

∑
m′ �=0

1
λ0−λm′

∑n−1
k=0

∑n−1
k=0〈σkσk′ 〉e−2πm′(k−k′)/n.

(77)

The computation of 〈S1〉 and 〈S2
1 〉 where averaging 〈. . .〉 is performed over the symmetric

distribution P{σ }, is straightforward:

1

n
〈S1〉 = 0,

1

n2
〈S2

1 〉 = 1

n
. (78)

Using (49), we obtain for the unperturbed part Â of the matrix T̂ (55) the following
expression for the eigenvalues

λm = 2e−4πim/n − 1 − 2e−4πim/n
√

1 − e4πim/n − (ew − 1)−1 − p0. (79)

Taking into account that

√
1 − e4πim/n =

√

2 sin
2πm

n
eiπ(m/n−1/4),

we can substitute (79) into last line of (77). Thus we get

1

n2
〈S2〉 = 1

n

∑

m′ �=0

1

λ0 − λm′
= 1

n

n−1∑

m′ �=0

(

2 − 2e−4πim′/n + 2e−πi(1/4+3m′/n)

√

2 sin
2πm′

n

)−1

.

(80)
Since the eigenvalues are distributed symmetrically with respect to the real axis (see Fig. 4a),
the sum

∑
m

1
λ0−λm′ takes only the real values. After some algebra, we arrive at the final

equation for the expectation 〈S2〉:

1

n2
〈S2〉 = 2

n

(n−1)/2∑

m′ �=0

1 − cos 4πm′
n

+
√

2 sin 2πm′
n

cos( 3πm′
n

+ π
4 )

sin 2πm′
n

(1 − 2
√

2 sin 2πm′
n

sin( 3πm′
n

+ π
4 ) + 2 sin 2πm′

n
)

. (81)
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In the limit n → ∞ the sum in (81) can be replaced by the integral:

1

n2
〈S2〉 ≈ 2

∫ 1/2

0

1 − cos 4πx + √
2 sin 2πx cos(3πx + π

4 )

sin 2πx(1 − 2
√

2 sin 2πx sin(3πx + π
4 ) + 2 sin 2πx)

dx = 1. (82)

Substituting (78) and (82) into (62) we arrive in the limit n → ∞ at the desired equation (63).

Appendix 2: Independence of Phase Boundary on Number of Periods � in the
Thermodynamic Limit

It follows from the general definition of the generating functions, that the fugacity (chemical
potential) s is conjugate to the number of copies, �, of the disorder potential with the period
length n (see (33)). At s = 1 the number of copies, �, is infinite, however at any s < 1 we
deal with the finite number of copies. So, in order to consider the phase transition in an
individual period of the substrate potential (33), i.e. for � = 1, we should shift the fugacity s

(conjugate to �) away from its marginal value s = str = 1 (corresponding to � → ∞) to some
value s� lying in the interval 0 < s� < str.

The number of periods, �, is controlled by the fugacity s�. It is evident that by changing �,
the total length, N , of the chain is changed as well and in order to localize shorter chain one
has to pay less energy than one needs for pinning of longer chain. Hence, to compare the
transition points in chains of different periods (i.e. of different lengths), we should normal-
ize the corresponding Boltzmann weights of a chain of � periods dividing the Boltzmann
weights in the matrix Ts (see (43)) by s�, i.e. setting (β − 1) → (β∗ − 1)/s�. Now we could
investigate how the normalized transition point, β∗

tr , depends on the typical fugacity s�. It is
easy to see that in the absence of any disorder (i.e. for ε = 0) the eigenvalue λ0 (see (48) for
m = 0) is given by the following integral

λ0(s�) = s�

π

∫ π

0

sinq sin 2q (1 − cosn q)

(1 − s� cosn q)(1 − cosq)
dq − s�

β∗ − 1
. (83)

The equation λ0(s�) = 0 in the limit n → ∞ determines the position of the normalized
transition point, β∗

tr(s�). Now one can easily verify that in the limit n → ∞ the integral
(83) is independent of s� and, hence, β∗

tr(s�) = 2 for any 0 < s� < str. The same conclusion
holds for ε �= 0 in the matrix Ts : the transition point in the limit n → ∞ for any random
primary sequence is independent of the effective fugacity s� corresponding to finite number
of periods, �. So, we conclude that in the thermodynamic limit the transition point in the
periodic sequence of � (� → ∞) random subchains each of length n (n 	 1) coincides with
the transition point in a single (� = 1) random subchain (of the same primary structure) of
length n (n → ∞).

The above results can be explained using a simple physical picture. Namely, consider
from the very beginning the random walk with periodic boundary conditions in the space.
The simplest way is to suppose that the first (t = 0) and last (t = N ) steps of the random
trajectory are always attached to the random substrate at the point x = 0. For such a periodic
system the location of the transition point is exactly given by the equation

lim
N→∞

detT {β1, β2, . . . , βN } = 0.

Hence, the transition point is not sensitive to whether the terminal step of the random walk is
attached to the surface or not. This is evident in the localized regime where the fluctuations
of mean-square end-to-end distance are constant (see (3)).
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